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Phase transitions at the fluid-solid interface are studied using an adsorption model
consisting of a fluid of hard spheres in contact with a planar wall which contains a lattice of
sticky adsorption sites. The model is equivalent to a lattice gas with n-body interactions that
are related to the n-body correlation functions of the fluid.

I. INTRODUCTION

The present paper is an overview of some of the results we have obtained in
the past three years using a statistical mechanical model to study phase
transitions which occur at the fluid-solid interface.l-3 The model, 4.5 as
discussed in Sec. II, consists of a dense fluid of hard spheres of diameter o
near a planar wall that contains a triangular lattice of sticky sites. This three-
dimensional model is equivalent to a two-dimensional lattice gas with many-
body interactions that are related to the many-body contact correlation
functions of the fluid.

The nature of the phases which occur at the fluid-solid interface in this
model depends on the fluid density, the strength of the sticky attraction at the
lattice sites, and also on the ratio of the hard sphere diameter to the lattice
spacing d. If ¢ slightly exceeds d, if the pair correlation functions are assumed
to be unity at distances exceeding d, and if many-body correlation functions are
approximated using the Kirkwood superposition approximation,6 the
adsorption model is then equivalent to the hard-hexagon lattice gas solved by
Baxter.” The isotherms for this case of the adsorption model, which undergoes
an order-disorder phase transition, can be calculated using some exact




expressions obtained by Joyce8 for the hard-hexagon model. These results are
presented in Sec. III along with some simplified expressions for the isotherms
which we obtained by exploiting a symmetry present in Joyce's original
expressions.

If the sphere diameter ¢ is much smaller than the lattice spacing d, so that
the correlation functions are approximately unity at distances as large as d,
then the model has no phase transition and the Langmuir adsorption isotherm
results.2

We have treated in some detail the special case for which ¢ = d.1-3 Simple,
but accurate analytical expressions are known for the contact pair correlation
function as a function of the fluid density.9-11 Assuming the pair correlation
functions decay to approximately unity at distances approaching the second
neighbor lattice spacing, and using the Kirkwood superposition approxi-
mation, the adsorption model is equivalent to a lattice gas with first-neighbor
pairwise interactions.l,5 The coexistence surface for the first-order phase
separation which occurs in this lattice gas is known exactly.12 Using several
exactly known coefficients in the series expansion of the properties of the lattice
gas,13 we obtained accurate adsorption isotherms which are a generalization of
Langmuir's isotherm.2 These results are presented in Sec. IV.

Recent calculations by Attard and Stell indicate that the Kirkwood super-
position approximation is not accurate for a triangle of hard spheres all in
mutual contact.14.15 Since such a configuration is present in the adsorption
model if ¢ = d, we have included the effects of three-body interactions in this
case of the model. The critical point of the equivalent lattice gas, which
contains pair and triplet interactions, has been approximatedl6 using the
interface method of Miiller-Hartmann and Zittarz.!? In addition, we dis-
covered a simple but accurate analytical approximation to the three-body
correlation function for three spheres in mutual contact.3 Together these
results yielded an estimate of the fluid density at the critical point of the two-
phase coexistence surface for the adsorption model3 which is significantly
higher than that predicted using only the contact pair correlation function and

the Kirkwood superposition approximation.! These results are presented in
Sec. V.

II. THE MODEL

We consider a model for adsorption in which a fluid of N hard spheres of
diameter ¢ in a volume V interacts with a hard wall, located at z = - 6/2, con-
taining a lattice A of sticky adsorption sites.1,4:5 The partition function for the
system is




z =$J‘ e-BH grN | (1)

where B = (kT)"!. The Hamiltonian can be written as
N
H= Ho+ L Usry, @
i=1 !

where H; is the Hamiltonian for the system in the absence of the sticky sites
(the smooth wall problem), and US(r;} is the potential for the interaction of a
hard sphere i at r; with the lattice of sticky sites {R;}). This sticky potential can
be written as

eBUr) =140 T &r;-Ry), (3)
€

where 8 is the Dirac delta function. The stickiness parameter A has units of
volume and, except for a constant factor, is the fugacity of adsorption of a hard
sphere onto a sticky site.

Performing the integrations in Eq. (1) to remove the delta functions and
rearranging terms yields

N

= A 0
2Zo= L A T oARy.Ry, 4)

where
pQ(ryyenry) = [Zo(N - n)!]‘lje" BHo dr ,..dry (5)
n
= g?,(rl,-.-,lr,,)_rl1 piry .
1=
Here, Z,, gd(ry,...,r,), and p{(r;) are respectively the partition function, an n-

body correlation function, and the single particle density for the smooth wall
problem.

Defining the potential of mean force UR,,...,R ) as

gdR,,...R) = e—BURy,.. . Ry) ©)
yields
N 0 n
Z/Z2y= L &9_1_(9_)]__ )X e-ﬁU(Rx.-.-.R..)’ -
n=0 n! (RJCA

1

—_——ﬁ




where p1(0) is the single particle density at the contact plane (z = 0). Changing
from a sum over the positions of labelled hard spheres on A to a sum over
lattice sites of A, Eq. (7) yields

= =Z/Z0= [2) [lp?(O)]Zti e~BU((L;) , (8)
Y

where t; is the occupation number of site i in a given configuration {t;}.

The adsorption model is thus equivalent to a two-dimensional lattice gas
with a grand canonical partition function =, a many-body interaction energy
U({t;}), and a chemical potential p given as

ePr =2pf0) . (9)
The fraction of sites of A which are occupied by spheres is given byl,5

—/}f'% ns . (10)

III. ADSORPTION OF LARGE SPHERES

If the hard sphere diameter o slightly exceeds the lattice spacing d, then
occupancy of two first-neighbor sites is excluded, and hence U({t;}) is infinite
for all such excluded configurations. If U({t;}) is assumed to be zero for all
allowed configurations, this is equivalent to assuming the pair correlation
function is unity at distances greater than or equal to the second-neighbor
separation, Y3 d, and that the n-body correlation functions are given by the
Kirkwood superposition approximation®

w&,Rhgng) (11)

Within the above approximations, the adsorption model is equivalent to the
hard hexagon lattice gas, which has been solved exactly by Baxter.” The
isotherms for the adsorption model can then be computed using exact
expressions for lp?(O) as a function of 8 which were obtained by Joyce8 for the
equivalent hard hexagon lattice gas. We noticed that these expressions have a
more compact form when Ap{(0) is written as a function of the variable

$=6(1-9) . (12)
The adsorption model undergoes an order-disorder transition at the fluid-solid

interface at a critical coverage 0c = (5 - Y5)/10 = 0.2764, which corresponds to
the value ¢, = 1/5.

]




The exact expression for kp‘l)(O) as a function of ¢ in the disordered region,
¢ < 1/5, can be written as

2p9(0) = QIQ.2Q, V2 + Q, - Qy(2Q; + 2Q,Q, V2)12] , (13)
where

Q = (806711 — 5¢ + 5¢2 + (1~ 40)Y2(1 - 3¢ + ¢2)]

Qp=1-5¢

Q; = (1-¢X1-50) (14)

Q, = (1-40)V4(1 - 11¢ + 3302 ~ 11¢3)

Qg =1— 160 + 9002 — 198¢3 + 119¢4 - 10¢5 .

.The expression in the ordered region, ¢ = 1/5, is given as

~2+ 96— 60— (2 - 56)(1 ~ 4)2
1-12¢ + 3302 + (56 — D¥2(9¢ - 1)V2

Ap0) = (15)

173+

0

0 pq’ 1-0

Figure 1. An isotherm with Mo = 10 for the case d <o < V3 d.




At the transition, [Ap(0)], = (11 + 5Y5)/2 = 11.09.....

The contact single particle density as approximated by the Percus-Yevick
(PY) theory is 9:10

6n(1 +2n)

0 3
(0)o° = R
P1 n(1 - n)?

(16)

where 1 =(n/6)pa® is the packing fraction. The maximum density possible for
hard spheres is pa3 = Y2, which occurs at closest-packing.

Isotherms in the 0 versus po3 plane can be easily calculated using Egs.
(13) - (16). An isotherm with A/63 = 10 is illustrated in Fig. 1.1

IV. ADSORPTION OF SMALL SPHERES

If the lattice spacing d greatly exceeds the hard sphere diameter o, then
the correlation functions can all be assumed to be unity for distances as large
as d. This is equivalent to assuming U((t;}) in Eq. (6) is zero for all allowed
configurations, and Eq. (8) becomes2

= =11+ 1000 an
Equations (10) and (17) then yield the Langmuir adsorption isotherm

0
0 = ).pl(O) ) (18)
1+ 2pJ(0)
The system in this case has no lateral interactions and does not undergo a
phase transition.

For the case in which the lattice spacing is identical to or slightly exceeds
the hard sphere diameter, if the pair correlation function is approximated to be
unity for distances as large as the second-neighbor lattice spacing, and if the n-
body correlation functions are approximated using the Kirkwood superposition

approximation of Eq. (11), these approximations are equivalent to assuming
that

where W is the pair potential of mean force at the first-neighbor lattice spacing,
i.e.,




e W = g%q) . (20)

The equivalent lattice gas thus has a partition function given by Eq. (8) and

Eq. (19). A first-order phase transition occurs in this lattice gas on the
triangular lattice if'1

Ap(0) = [gdd)-3 . (21)

The two-phase coexistence surface for this transition has been calculated
exactly and is given by12

0 =4(1 £ (1 - 16g9(d)gd(d) - 11~ 3(gdd) + 3]- 1} 1/8) . (22)

The parameters at the critical point of this transition, which occurs at 6 = 1/2,
are given from Eq. (21) and Eq. (22) as!

(g2d), =3
R0, = 127 . (23)

For the special case 6 = d, we let g, = gg(o), and the PY approximation to
the contact pair correlation function9,10

1.0

0 ;
0 o3 1.0

Figure 2. The coexistence curve for the case o = d. The two coexisting phases on the isotherm
with A/a3 = 0.01 are marked with dots.




l1+n/2

(24)
(1-m)?

g2 =

can be used with Eq. (22) to plot the two-phase coexistence surface in the (8, po3)
plane. For an appropriate fixed value of A/o3, the density at which a phase
transition occurs on this isotherm can be calculated using Egs. (16), (21), and
(24).!1 For example, on the isotherm for which A/o3 = 0.01, the two-phase
coexistence occurs at po3 = 0.727 with 6 = 0.886 and 6 = 0.114. These two transi-
tion points are pictured on the two-phase coexistence curve in Fig. 2.

Although the isotherms for this case have not been calculated exactly (this
would be equivalent to solving the Ising model in non-zero field), many exact

coefficients in series approximations to 6 have been obtained. Letting y =
(xp0) gg]"l, at low densities (y > 1)13

8,(y) = El ry-Telgy"h) . (25)
r=
and at high densities (y < 1)
1-6,(y) = El ry c g (26)
r=

where c, is a polynomial in g2‘1. The hole-particle symmetry present in the
lattice gas with first-neighbor interactions is exhibited in the relationship,
where y < 1,

0y 1)=1-6,(y) . 27
Equation (21) implies the first order transition occurs at y = 1.

We have constructed approximants? which are a natural extension of
Langmuir's isotherm

P(y-1)
0y) = —2Y ) _
=1 P
_ Py
1-%0=1Tp) (28)

where P(y-1) can be written as
m
P(y-1) = r:_:1 p,(82) [Ap (O] . (29)

The coefficients p,(g,) are polynomials in g, which are determined by requiring




that the coefficients in the series expansions of Eq. (28) match the first m coeffi-
cients of Eq. (25) and Eq. (26). Written in terms of f = g2 — 1, the polynomials
P.(g3), r < 8, for the triangular lattice were calculated to be

py=1

pg = 6f

p3 = —6f+ 45f2 + 6f3

P4 = 6f-120f2 + 34413 + 1084 + 12f5

P = —6f + 2252 — 16803 + 24784 + 137415 + 315¢6 + 307

Pg = 6f— 360f2 + 492013 — 19788f4 + 15474f + 1464016 + 5298f7
+1008£8 + 84f9

p7 = —6f + 5252 - 11270f3 + 828034 — 205830f + 66926£6 + 135396f7
+71274F8 + 20776f9 + 350710 + 294111 4 7f12

Pg = 6f— 7202 + 222243 — 2545684 + 1179828f5 ~ 1905384f6
- 101754f7 + 1068366f 8 + 81726019 + 330282f 10 + 83868f 11
+13374f 12 4 1224f13 4 48F14 | (30)

Using 6,(y) and 6, (y) of Eq. (28), together with a switching function n(y)
which vanishes at y = 0 and becomes unity as y — o, a continuous
approximation to 6 which is accurate both at high and low fluid densities can
be constructed as2

8(y) = 8;(y)n(y) + 8,(y)[1 - n(y)] . (31)
Since 6,(y) and 6;,(y) have the symmetry of Eq. (27), then if n(y) satisfies ny—1
= 1-n(y), the approximation to 8 given by Eq. (31) also satisfies 8(y~1) = 1 — 6(y).
A possible choice for the switching function is

n(y) = 41 + erf (s(y - y-bl , (32)

where s is a measure of the sharpness of the change between the two limiting
values of n(y).

V. EFFECTS OF THREE-BODY CORRELATIONS

Using pair correlations only, we can estimate the fluid density at the
critical point of the first-order transition for the case ¢ = d by combining the




r————

condition (g,), = 3 with the PY contact pair correlation function of Eq. (24). This
yields the estimate!

13-Y73

=0.7092 . (33)
2n

p.os =

If the more accurate Carnahan-Starling (CS) pair correlation functionl0.11

1-n/2

(34)
(1-n)3

Bo =

is used for the calculation, the resulting estimate of this fluid density, p o3 =
0.6678, is slightly lower than that given by the PY correlation function.

A recent calculation by Attard and StelllS using the Percus-Yevick 3 (PY3)
theory,!8 which includes three-body correlations, indicates that the Kirkwood
superposition approximation of Eq. (11) is not accurate for the triplet
correlation function of three spheres in mutual contact, but it is accurate for
other possible configurations of three spheres on the triangle lattice.3

An improved estimate of U({t;}) is then given as3

Ul) =W I tt+ W3 £ 5t (35)

where the second sum is over all triangles of nearest neighbor sites on the
lattice. From Eq. (6) and Eq. (35), we can identify W as the pair potential of
mean force and W3 + 3W as the potential of mean force for three spheres in
mutual contact.

This is equivalent to the superposition approximation3
gd(R,,...R,) = Mgl /g3, (36)

where galls the tnplet correlation function for three spheres in mutual contact,
, and g3/g2 e‘pw3

Within this triplet correlation approximation, the model is equivalent to a
lattice gas with pairwise interactions, W, and three-body interactions, W;.3
Using the interface method of Miiller-Hartmann and Zittarz,17 the critical
point of the coexistence surface in the la‘tice gas is predicted to satisfy,16 where

g0 =85/83%,

(go)c =3 . ®y))




Using the PY3 theory,18 Attard and Stelll5 calculated gz numerically over a
wide range of fluid densities. We recently discovered3 that their numerical
results are accurately approximated by the simple analytical expression

_4-Tn+Tn2-2n3
4(1-m)°

(38)

g6

Using Eq. (37) and Eq. (38), the fluid density at the critical point of the

transition is calculated to be p o3 = 0.8409.3 This estimate of the minimum
fluid density necessary for a phase transition to occur at the fluid-solid
interface is much larger than that predicted using only the pair correlation
function and the Kirkwood superposition approximation.! The inclusion of
triplet correlations is thus important for studying adsorption in this case of the
model.
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